Filter

Schedule: September 13

Filter:

All Events

Plenary & Tracks

GOSIM Plenary Sessions
AI Models x Infra
Embodied AI
Agentic Web
Apps x Agents
AI Next

Workshops

SGLang Workshop
Cangjie Workshop
Dora Workshop
Future Web Workshop
Edge AI Workshop
CANN Workshop
Flutter Meetup
Chitu First Meetup
AI for Education Workshop
RN Workshop
Makepad Workshop
Embedded Rust x AI WorkShop
Solana for Rustaceans Workshop
Open Source Globalization Workshop

Co-located Events

AI Vision Forum
Open for SDG Conference
RustChinaConf & Rust Global China Plenary
Track 1: Rust Global | In-depth Industry Applications
Track 2: Evolution of the Language Ecosystem
Track 3: Rust Innovations in Infrastructure: AI x OS
All Events

Plenary & Tracks

GOSIM Plenary Sessions
AI Models x Infra
Embodied AI
Agentic Web
Apps x Agents
AI Next

Workshops

SGLang Workshop
Cangjie Workshop
Dora Workshop
Future Web Workshop
Edge AI Workshop
CANN Workshop
Flutter Meetup
Chitu First Meetup
AI for Education Workshop
RN Workshop
Makepad Workshop
Embedded Rust x AI WorkShop
Solana for Rustaceans Workshop
Open Source Globalization Workshop

Co-located Events

AI Vision Forum
Open for SDG Conference
RustChinaConf & Rust Global China Plenary
Track 1: Rust Global | In-depth Industry Applications
Track 2: Evolution of the Language Ecosystem
Track 3: Rust Innovations in Infrastructure: AI x OS
  • September 13

    10:15 - 10:50

    OpenSeek:开源驱动的下一代AI模型

    OpenSeek: Open-Source Driven Next AI Models

    AI Models x Infra

    Venue 4 - 338

    OpenSeek旨在联合全球开源社区,协作推进算法、数据和系统,促进下一代模型的发展。在第一阶段,我们发布了CCI4.0、OpenSeek-small和OpenSeek-Pipeline,在FlagScale中开发了DualPipe-V策略,并与琶洲竞赛启动协作任务以支持社区贡献。该倡议组织为三个专门的工作组,分别专注于数据、算法和系统。

    OpenSeek aims to unite global open-source communities to collaboratively advance algorithms, data, and systems for next-generation models. In stage one, we released CCI4.0, OpenSeek-small, and OpenSeek-Pipeline, developed the DualPipe-V strategy in FlagScale, and launched a collaborative task with the PAZHOU Competition to support community contributions. The initiative is organized into three dedicated working groups, focusing respectively on data, algorithms, and systems.

  • September 13

    10:50 - 11:25

    引擎与熔炉:在超级计算机上构建定制化的 PyTorch 框架

    The Engine and the Forge: Building a Custom PyTorch Framework on a Supercomputer

    AI Models x Infra

    Venue 4 - 338

    这是为构建者、架构师和基础设施专家准备的深度探讨。我们将带领听众踏上深入Bielik.AI项目核心的技术之旅。我们从"引擎"开始:我们专为超级计算机环境构建的定制PyTorch框架。本次演讲探讨在超级计算基础设施上适配PyTorch进行大规模分布式训练所涉及的架构决策、优化策略和工程挑战。我们研究性能瓶颈、内存管理策略,以及将深度学习工作负载扩展到数千个计算节点的实际考虑因素。

    This is a deep-dive for the builders, architects, and infrastructure experts. We will take the audience on a technical journey into the heart of the Bielik.AI project. We start with the "engine": our custom PyTorch framework built specifically for supercomputer environments. This presentation explores the architectural decisions, optimization strategies, and engineering challenges involved in adapting PyTorch for large-scale distributed training on supercomputing infrastructure. We examine performance bottlenecks, memory management strategies, and the practical considerations of scaling deep learning workloads to thousands of compute nodes.

  • September 13

    11:25 - 12:00

    Khronos在标准化AI加速中的角色:AI生态系统研究项目的发现

    Khronos's Role in Standardizing AI Acceleration: Findings from the AI Ecosystem Research Project

    AI Models x Infra

    Venue 4 - 338

    本次演讲将揭示Khronos组织全面AI生态系统研究项目的关键发现,这是一项旨在数据驱动地理解快速发展的AI加速领域的重大举措。我们探讨OpenCL、Vulkan等Khronos标准以及新兴规范如何满足不同硬件平台上AI开发者的多样化需求。演讲涵盖行业趋势、硬件供应商观点、开发者需求,以及开放标准在确保AI加速技术互操作性和创新方面的战略作用。

    This presentation will reveal the key findings of the Khronos Group's comprehensive AI Ecosystem Research Project, a major initiative undertaken to gain a data-driven understanding of the rapidly evolving AI acceleration landscape. We explore how Khronos standards like OpenCL, Vulkan, and emerging specifications address the diverse needs of AI developers across different hardware platforms. The presentation covers industry trends, hardware vendor perspectives, developer requirements, and the strategic role of open standards in ensuring interoperability and innovation in AI acceleration technologies.

  • September 13

    14:00 - 14:20

    GLM 4.5系列模型开源生态

    Open-Source Ecosystem of the GLM-4.5 Series Models

    AI Models x Infra

    Venue 4 - 338

    本次介绍将陈述2025年来智谱开源的模型,包括GLM-4.5系列,GLM-4.1V系列,以及陈述智谱AI在模型开源上的工程与算法适配,社区合作模式。通过系统性阐述智谱AI开源模型的流程,让开发者熟悉大模型开源过程中的工程和算法难题,解决方案和工作方法。

    This presentation will discuss the models open-sourced by ZhiPuAI since 2025, including the GLM-4.5 series and GLM-4.1V series, as well as describe ZhiPuAI's engineering and algorithmic adaptation in model open-source, and community collaboration models. Through a systematic explanation of ZhiPuAI's open-source model processes, developers will become familiar with the engineering and algorithmic challenges in the large model open-source process, solutions, and working methods.

  • September 13

    14:20 - 14:40

    蚂蚁AI网关 - 大规模在线推理服务集群性能优化实战

    Ant AI Gateway - A Practical Guide to Optimizing Performance in Large-Scale Online Inference Service Clusters

    AI Models x Infra

    Venue 4 - 338

    蚂蚁AI网关 - 大规模在线推理服务集群性能优化实战

    Ant AI Gateway - A Practical Guide to Optimizing Performance in Large-Scale Online Inference Service Clusters

  • September 13

    14:40 - 15:00

    基于openUBMC构建下一代AI基础设施智能设备管理平台

    Building the Next-Generation AI Infrastructure Device Manageability Based on openUBMC

    AI Models x Infra

    Venue 4 - 338

    基于openUBMC构建下一代AI基础设施智能设备管理平台

    Building the Next-Generation AI Infrastructure Device Manageability Based on openUBMC

  • September 13

    15:00 - 15:20

    赋能云原生AI:基于Volcano调度器破解大规模语言模型部署难题

    Empowering Cloud-Native AI: Solving Large-Scale LLM Deployment Challenges with the Volcano Scheduler

    AI Models x Infra

    Venue 4 - 338

    赋能云原生AI:基于Volcano调度器破解大规模语言模型部署难题

    Empowering Cloud-Native AI: Solving Large-Scale LLM Deployment Challenges with the Volcano Scheduler

  • September 13

    15:40 - 16:15

    verl:面向智能体训练的开源LLM强化学习框架

    verl: An Open-Source LLM Reinforcement Learning Framework for Agent-Oriented Training

    AI Models x Infra

    Venue 4 - 338

    verl:面向智能体训练的开源LLM强化学习框架

    verl: An Open-Source LLM Reinforcement Learning Framework for Agent-Oriented Training

  • September 13

    16:15 - 16:50

    昇腾高吞吐投机推理框架Omni-Infer

    Omni-Infer: Ascend High-Throughput Speculative Inference Framework

    AI Models x Infra

    Venue 4 - 338

    EAGLE/MTP为代表的高接受率的投机推理方案,正推动着投机推理的落地。投机推理一次推理计算多个token,能够充分发挥昇腾高计算密度带宽比的特点。为此,我们开发适配了高性能推理框架omniinfer,来充分发挥昇腾的性能。针对eagle、mtp等投机推理方案模型结构上的特点,我们优化投机推理的调度框架,降低昇腾的空闲时间,并对采样方式进行优化,维持模型精度、提升接受率。当然,针对昇腾硬件的特点,我们也实现了针对性的硬件优化。

    High-acceptance-rate speculative inference schemes represented by EAGLE/MTP are driving the deployment of speculative inference. Speculative inference computes multiple tokens in one inference, which can fully leverage Ascend's high computational density-to-bandwidth ratio. To this end, we developed the high-performance inference framework omniinfer to fully unleash Ascend's performance. Targeting the model structural characteristics of speculative inference schemes like EAGLE and MTP, we optimized the speculative inference scheduling framework, reducing Ascend's idle time, and optimized sampling methods to maintain model accuracy while improving acceptance rates. We also implemented hardware-specific optimizations for Ascend's characteristics.

  • September 13

    16:50 - 17:25

    持续学习的工业化:构建可重训练的大模型定制流水线

    Industrializing Continuous Learning: Building Retrainable Pipelines for tailored LLMs

    AI Models x Infra

    Venue 4 - 338

    持续学习的工业化:构建可重训练的大模型定制流水线

    Industrializing Continuous Learning: Building Retrainable Pipelines for tailored LLMs

  • September 13

    10:15 - 10:50

    AI与下一代Web

    AI and Next Generation Web - Agentic Web

    Agentic Web

    Venue 1 - 278

    W3C与全球Web社区合作,分析AI系统对Web的广泛和不断演变的影响,并研究Web标准化在塑造和管理这种影响方面的潜在作用。本次演讲分享W3C最近与AI相关的活动和讨论,如浏览器中的AI、AI智能体、Web ML、AI与可访问性、AI安全与隐私,以及一些即将开展的Web和AI主题活动。

    W3C works with global Web community on analyzing the broad and evolving impact of AI systems on the Web, and examining the potential role of Web standardization in shaping and managing that impact. This talk shares the recent AI related activities and discussions in W3C such as AI in browser, AI Agents, Web ML, AI and accessibility, AI security and privacy, as well as some coming activities on the topic of Web and AI.

  • September 13

    10:50 - 11:25

    智能体协议:引领互联网迈向 Agentic Web 时代

    Agent Protocol: Leading the Internet into the Agentic Web Era

    Agentic Web

    Venue 1 - 278

    随着大模型技术的发展,智能体(Agent)正逐步成为互联网的核心参与者。本次演讲梳理了从语义网到Agentic Web的技术演进,提出构建标准化智能体网络协议的紧迫性与必要性。我们总结出Agentic Web的四大关键趋势:智能体替代传统软件、实现普遍互联、以协议为核心连接方式,以及具备自主协作能力。同时,本文指出当前互联网在接口、协作和数据孤岛等方面对智能体发展构成阻碍。为解决上述挑战,我们提出了智能体网络协议的设计原则与功能需求,并比较分析了MCP、A2A、ACP与ANP等主流协议。

    With the development of large model technology, agents are gradually becoming core participants in the Internet. This presentation reviews the technical evolution from the Semantic Web to the Agentic Web, proposing the urgency and necessity of building standardized agent network protocols. We identify four key trends of the Agentic Web: agents replacing traditional software, achieving universal interconnection, protocol-centered connection methods, and autonomous collaborative capabilities. We propose design principles and functional requirements for agent network protocols, and compare mainstream protocols like MCP, A2A, ACP and ANP.

  • September 13

    11:25 - 12:00

    Servo:一个用Rust编写的全新网页引擎

    Servo: A new web engine written in Rust

    Agentic Web

    Venue 1 - 278

    Servo是一个用Rust编写的现代开源Web渲染引擎。Servo专为安全性、模块化和性能而构建,将内存安全和并发性带到了浏览器引擎创新的前沿。自2023年Igalia接管项目维护以来,Servo开发重新激活,项目社区不断壮大。在这次演讲中,我们将讨论过去几年项目的工作情况、实现的主要功能以及Servo的整体演进。我们将重点介绍Android和OpenHarmony等新平台的增加,以及为使Servo成为其他Web引擎可行替代方案而开发的多种优化。

    Servo is a modern open source web rendering engine written in Rust. Built for safety, modularity, and performance, Servo brings memory safety and concurrency to the forefront of browser engine innovation. Servo development has been reactivated in 2023 since Igalia took over the maintenance of the project, the project community has been constantly growing since then. In this talk we'll discuss the last few years working on the project, the main features implemented and the overall evolution of Servo. We'll highlight the new platform additions like Android and OpenHarmony, together with the multiple optimizations that have been developed to make Servo a viable alternative to other web engines.

  • September 13

    14:00 - 14:35

    超越现有范式:面向后数字时代AI生态系统的RVP协议

    Beyond Existing Paradigms: RVP Protocol for Post-Digital AI Ecosystems

    Agentic Web

    Venue 1 - 278

    随着AI技术迈入新纪元,传统数字化架构的局限性日益凸显。本次演讲将介绍革命性的RVP(Reality-Virtualization-Perception)协议,这是面向后数字时代设计的全新AI生态系统架构。演讲将深入解析RVP协议的三大核心:现实层的多源数据融合、虚拟化层的数字孪生技术、以及感知层的多模态AI能力整合。重点阐述该协议如何突破现有技术瓶颈,实现跨域协同、自适应进化的智能网络。通过智慧城市、自动驾驶、工业互联网等实际应用案例,展示RVP协议在解决数据孤岛、算力分散、模型割裂等关键问题上的独特优势。

    As AI technology enters a new era, the limitations of traditional digital architecture become increasingly apparent. This presentation will introduce the revolutionary RVP (Reality-Virtualization-Perception) protocol, a brand-new AI ecosystem architecture designed for the post-digital era. The talk will deeply analyze the three core components of the RVP protocol: multi-source data fusion at the reality layer, digital twin technology at the virtualization layer, and multimodal AI capability integration at the perception layer. It will highlight how this protocol breaks through existing technical bottlenecks to achieve cross-domain collaboration and adaptive evolution of intelligent networks.

  • September 13

    14:35 - 15:20

    一种数据空间定义语言(DSDL),用于实现数据空间之间的互操作性,并支持与自主智能体AI生态系统的集成。

    A data space definition language (DSDL) to enable interoperability between data spaces and enable the integration with the Agentic AI Ecosystem.

    Agentic Web

    Venue 1 - 278

    一种数据空间定义语言(DSDL),用于实现数据空间之间的互操作性,并支持与自主智能体AI生态系统的集成。

    A data space definition language (DSDL) to enable interoperability between data spaces and enable the integration with the Agentic AI Ecosystem.

  • September 13

    15:40 - 16:15

    构建Agentic Web:谷歌的愿景、技术与框架,共创协作式 AI 未来

    Building the Agentic Web: Google's Vision, Technology, and Frameworks for a Collaborative AI Future

    Agentic Web

    Venue 1 - 278

    解锁 AI 智能体的无限潜能!本场专题演讲将深入探讨如何借助 ADK、A2A、MCP 和 Agent Engine 构建 AI 智能体。了解如何利用 Google 最新的 AI 技术打造协作性强、高效、可扩展的多智能体系统。探索智能体开发的未来,了解智能体将如何革新我们与科技的互动方式。这一全面概述涵盖了Google对智能体网络的战略愿景、实用的实现框架,以及实现AI驱动的网络交互全部潜力所需的协作生态系统。

    Unlock the infinite potential of AI agents! This keynote presentation will dive deep into how to leverage ADK, A2A, MCP and Agent Engine to build AI agents. Learn how to harness Google's latest AI technologies to create collaborative, efficient, and scalable multi-agent systems. Explore the future of agent development and discover how agents will revolutionize the way we interact with technology. This comprehensive overview covers Google's strategic vision for the agentic web, practical implementation frameworks, and the collaborative ecosystem needed to realize the full potential of AI-powered web interactions.

  • September 13

    16:15 - 16:50

    无界对话:使用Flutter、WebRTC和LiveKit构建语音智能体

    Conversations Without Boundaries: Building Voice Agents with Flutter, WebRTC, and LiveKit

    Agentic Web

    Venue 1 - 278

    无界对话:使用Flutter、WebRTC和LiveKit构建语音智能体

    Conversations Without Boundaries: Building Voice Agents with Flutter, WebRTC, and LiveKit

  • September 13

    16:50 - 17:25

    MarkdownFlow,下一代HTML

    MarkdownFlow, the next HTML

    Agentic Web

    Venue 1 - 278

    MarkdownFlow通过AI智能扩展标准Markdown,创建个性化的交互式页面。它的口号是"一次创作,千人千面"。所有人类、代码和AI都可以无缝地读写MarkdownFlow内容。这种革命性方法将Markdown的简洁性与AI驱动的个性化能力相结合,使内容能够根据每个读者的上下文、偏好和需求动态适应。我们探讨MarkdownFlow如何弥合静态内容和动态用户体验之间的差距,使Web内容更加可访问和引人入胜。

    MarkdownFlow extends standard Markdown with AI intelligence to create personalized, interactive pages. Its tagline is "Write Once, Deliver Personally". All of humans, code and AIs can read and write MarkdownFlow content seamlessly. This revolutionary approach combines the simplicity of Markdown with the power of AI-driven personalization, enabling content that adapts dynamically to each reader's context, preferences, and needs. We explore how MarkdownFlow bridges the gap between static content and dynamic user experiences, making web content more accessible and engaging.

  • September 13

    10:15 - 10:50

    扣子 ,用 Agent 重塑生产力

    Coze, Reshaping Productivity with Agents

    Apps x Agents

    Venue 5 - 358

    Agent正面临全面爆发的一年,本次演讲将围绕Agent全生命周期,探讨从开发、评测、观测、调优和企业级应用等几方面,如何更好的帮助Agent开发者快速将Agent从idea到demo、从demo到生产。

    Agents are facing a year of comprehensive explosion. This presentation will focus on the full lifecycle of Agents, exploring how to better help Agent developers quickly take Agents from idea to demo, and from demo to production, covering development, evaluation, observation, optimization, and enterprise-level applications.

  • September 13

    10:50 - 11:25

    2025大模型服务性能排行榜

    2025 Large Model Service Performance Rankings

    Apps x Agents

    Venue 5 - 358

    在大模型应用快速迭代的当下,以MaaS为代表的大模型服务凭借其便捷的接入方式和较低的使用门槛,日益成为开发者调用大模型能力进行应用开发的核心方式之一。然而,面对市场上层出不穷、各具特色的大模型服务平台,开发者往往面临着较大的选择难题,如何找到性能稳定、高性价比的服务商成为重要课题。本次演讲分享正是基于这样的市场需求和开发者面临的困境,清华大学联合中国软件评测中心,推出了《2025大模型服务性能排行榜》,为业界提供全面的评测和指导。

    In the current era of rapid iteration of large model applications, large model services represented by MaaS are increasingly becoming one of the core ways for developers to call large model capabilities for application development due to their convenient access methods and low usage thresholds. However, facing the emerging and distinctive large model service platforms in the market, developers often face significant selection difficulties. How to find stable and cost-effective service providers has become an important topic. This presentation shares findings based on market demand and the difficulties developers face. Tsinghua University, in collaboration with the China Software Evaluation Center, launched the '2025 Large Model Service Performance Rankings' to provide comprehensive evaluation and guidance for the industry.

  • September 13

    11:25 - 12:00

    未来的认知AI:通过OpenVINO实现的视觉语言应用的智能多模态模型与RAG

    Cognitive AI for the Future: Agentic Multimodal Models and RAG for Vision Language Applications with OpenVINO

    Apps x Agents

    Venue 5 - 358

    认知AI代表了机器理解和与世界交互方式的变革性飞跃。尽管具有潜力,但在使这些系统在不同领域中变得可访问和适用方面仍存在实际挑战。本次演讲讨论了多模态模型如何与检索增强生成(RAG)和智能体工作流相结合,使认知AI系统能够通过OpenVINO提供个性化、上下文感知的解决方案。从教育工具到老年人和残疾人辅助技术的应用,本次演讲重点介绍优化和部署这些模型和管道的实用策略,使其对研究人员和从业者既可扩展又可访问。

    Cognitive AI represents a transformative leap in how machines understand and interact with the world. Despite its potential, practical challenges remain in making these systems accessible and applicable across diverse domains. This talk addresses how multimodal models, combined with Retrieval-Augmented Generation (RAG) and agentic workflows, can enable cognitive AI systems to deliver personalized, context-aware solutions with OpenVINO. With applications ranging from educational tools to assistive technologies for the elderly and disabled, this talk focuses on practical strategies for optimizing, and deploying these models and pipelines, making them both scalable and accessible to researchers and practitioners.

  • September 13

    14:00 - 14:25

    SPEAR - 跨边缘云的可扩展分布式AI代理框架

    SPEAR - A Scalable and Distributed AI Agents Framework Across Edge and Cloud

    Apps x Agents

    Venue 5 - 358

    SPEAR - 跨边缘云的可扩展分布式AI代理框架

    SPEAR - A Scalable and Distributed AI Agents Framework Across Edge and Cloud

  • September 13

    14:25 - 14:50

    MonkeyCode - 开源AI代码助手

    MonkeyCode-Open-Source AI code assistant

    Apps x Agents

    Venue 5 - 358

    MonkeyCode - 开源AI代码助手

    MonkeyCode-Open-Source AI code assistant

  • September 13

    14:50 - 15:15

    Nexent:如何用AI制造AI,智能体如何落地真实企业

    Nexent: How to Build Agents with AI, and How Agents Can Be Applied in Real Enterprises

    Apps x Agents

    Venue 5 - 358

    Nexent:如何用AI制造AI,智能体如何落地真实企业

    Nexent: How to Build Agents with AI, and How Agents Can Be Applied in Real Enterprises

  • September 13

    15:40 - 16:15

    鸿蒙行业创新解决方案:构建更加智能的应用服务体验

    HarmonyOS Industry Innovation Solution: Building a More Intelligent Application Service Experience

    Apps x Agents

    Venue 5 - 358

    行业智能化需求升级、设备壁垒待破之际,本次分享聚焦鸿蒙行业创新解决方案:从其分布式技术、全场景协同能力切入,详解鸿蒙app的行业解决方案,助力企业开发降本增效。

    At a time when industry intelligent needs are upgrading and device barriers need to be broken, this sharing focuses on HarmonyOS industry innovation solutions: starting from its distributed technology and full-scenario collaborative capabilities, it explains HarmonyOS app industry solutions in detail to help enterprises reduce development costs and increase efficiency.

  • September 13

    16:15 - 16:50

    本地设备上的端到端AI聊天与翻译系统

    End-to-end AI chat and translation system on local devices

    Apps x Agents

    Venue 5 - 358

    在这次演讲中,我们展示了我们在本地设备(如笔记本电脑或本地AI加速器)上的端到端AI聊天与翻译系统的最新进展。我们的端到端系统具有创新特性,包括针对边缘设备高效推理的专用模型架构、实现实时性能的先进优化技术,以及具有高质量翻译能力的全面多语言支持。我们展示了实际应用和性能基准,证明了在完全不依赖云端的情况下在本地硬件上运行复杂AI系统的可行性。

    In this presentation, we present the recent progress of our end-to-end AI chat and translation system on local devices, such as laptop computers or local AI accelerators. Our end-to-end system has innovative features including specialized model architectures for efficient inference on edge devices, advanced optimization techniques for real-time performance, and comprehensive multilingual support with high-quality translation capabilities. We demonstrate practical applications and performance benchmarks that showcase the viability of running sophisticated AI systems entirely on local hardware without cloud dependencies.

  • September 13

    16:50 - 17:25

    5ire:一个开源 AI 项目的从零到一

    5ire: From Zero to One for an Open Source AI Project

    Apps x Agents

    Venue 5 - 358

    5ire:一个开源 AI 项目的从零到一

    5ire: From Zero to One for an Open Source AI Project

No sessions available for category AI Vision Forum

No sessions available for category SGLang Workshop

No sessions available for category Dora Workshop

  • September 13

    10:15 - 10:20

    Future Web: 开场致辞

    Future Web: Opening Remarks

    Future Web Workshop
  • September 13

    10:20 - 10:40

    Servo布局系统深入解析

    A Dive Into the Servo Layout System

    Future Web Workshop

    Venue 8 - B03

    Servo是一个用Rust编写的新型Web渲染引擎。本次工作坊将深入探讨Servo独特的布局系统,该系统使用Rust的无畏并发为布局添加并行性。我们将探索Servo的布局引擎以了解其工作原理,深入技术细节,解释现代CSS布局引擎的架构,查看CSS功能的实现方式,并描述涉及的不同阶段和数据结构。

    Servo is a new web rendering engine written in Rust. This workshop will be an in-depth look at Servo's one-of-a-kind layout system, which uses Rust's fearless concurrency to add parallelism to layout. We'll explore Servo's layout engine to understand how it works, driving deep into the technical details, explaining the architecture of a modern CSS layout engine, looking at how CSS features are implemented, and describing the different phases and data structures involved.

  • September 13

    10:40 - 11:00

    嵌入式Servo系统的乐趣与价值

    The Joy and Value of Embedded Servo Systems

    Future Web Workshop

    Venue 8 - B03

    Servo是一个没有浏览器的Web引擎。在这个工作坊中,我们将尝试通过将Servo嵌入到各种类似浏览器的应用程序中来解决这个问题,并展示各种潜在的用例(甚至可能是未来的AI浏览器)。

    Servo is a web engine without a browser. In this workshop we will try to remedy this by embedding Servo in various browser-like applications, and showcase various potential use cases (maybe even the AI browser from the future).

  • September 13

    11:00 - 11:20

    Prune4Web:面向Web智能体的DOM树剪枝编程框架

    Prune4Web: DOM Tree Pruning Programming for Web Agent

    Future Web Workshop

    Venue 8 - B03

    Web自动化使用智能代理通过模仿人类与网页的交互来执行高级任务。尽管基于LLM的Web代理最近取得了进展,但由于庞大的DOM结构,有效导航复杂的真实世界网页仍然具有挑战性。本次演讲将介绍Prune4Web,这是一种将DOM处理从基于LLM的过滤转变为程序化剪枝的范式。这种方法消除了LLM处理完整DOM的需要,而是将遍历和评分委托给轻量级、可解释的程序。

    Web automation uses intelligent agents to perform high-level tasks by mimicking human interactions with webpages. Despite recent advances in LLM-based web agents, efficiently navigating complex, real-world webpages remains challenging due to massive DOM structures. This talk will present Prune4Web, a paradigm that transforms DOM processing from LLM-based filtering to programmatic pruning. This approach eliminates the need for LLMs to process full DOMs, instead delegating traversal and scoring to lightweight, interpretable programs.

  • September 13

    11:20 - 11:40

    OpenHarmony与Servo的协同创新:统一渲染与WebDriver

    Driving Innovation with Servo and OpenHarmony: Unified Rendering and WebDriver

    Future Web Workshop

    Venue 8 - B03

    Servo在2024年被移植到OpenHarmony,基于在GOSIM 2024上展示的进展。本次演讲展示了Servo在OpenHarmony上的统一渲染方法,并展示了WebDriver集成与自动化测试能力方面取得的重大进展。我们探讨跨不同设备形态的统一渲染技术架构、用于跨平台自动化的WebDriver标准实现,以及在OpenHarmony生态系统中增强Web兼容性和性能优化的未来路线图。

    Servo is ported to OpenHarmony in 2024, building upon the progress presented at GOSIM 2024. This talk demonstrates the unified rendering approach of Servo on OpenHarmony and showcases significant advances made for WebDriver integration with automated testing capabilities. We explore the technical architecture of unified rendering across different device form factors, the implementation of WebDriver standards for cross-platform automation, and the roadmap ahead for enhanced web compatibility and performance optimizations in the OpenHarmony ecosystem.

  • September 13

    11:40 - 12:00

    AI与下一代互联网

    AI and Next Generation Web - Future Web

    Future Web Workshop

    Venue 8 - B03

    W3C与全球Web社区合作,分析AI系统对Web的广泛和不断演变的影响,并研究Web标准化在塑造和管理这种影响方面的潜在作用。本次演讲探讨AI如何改变Web技术、智能Web代理的出现、Web机器学习API的进展、AI驱动的Web应用的可访问性考虑,以及AI与Web交汇处的安全和隐私挑战。我们将讨论即将到来的W3C倡议和标准化工作,这些将定义智能Web体验的未来。

    W3C works with the global Web community on analyzing the broad and evolving impact of AI systems on the Web, and examining the potential role of Web standardization in shaping and managing that impact. This talk explores how AI is transforming web technologies, the emergence of intelligent web agents, advances in Web Machine Learning APIs, accessibility considerations for AI-powered web applications, and security and privacy challenges in the AI-web intersection. We'll discuss upcoming W3C initiatives and standardization efforts that will define the future of intelligent web experiences.

  • September 13

    14:00 - 14:05

    开场

    Intro

    Edge AI Workshop
  • September 13

    14:05 - 14:30

    llama.cpp 如何工作、核心关注点、路线图、如何贡献等

    How llama.cpp works, their focus, roadmap, how to contribute, etc

    Edge AI Workshop

    Venue 6 - B01

    llama.cpp 如何工作、核心关注点、路线图、如何贡献等

    How llama.cpp works, their focus, roadmap, how to contribute, etc

  • September 13

    14:30 - 14:55

    面向端侧的大规模 MoE 部署的协同压缩

    Collaborative Compression for Large-Scale MoE Deployment on Edge

    Edge AI Workshop

    Venue 6 - B01

    专家混合(MoE)架构是扩展大语言模型的重要方法,能够在保持低计算成本的同时增加模型容量。然而,最新的超大规模MoE模型仍有数千亿参数,需要非常大的内存和存储空间,使得在边缘或资源受限环境中的部署变得困难。本演讲介绍了一个针对超大规模MoE模型的压缩框架,结合了专家剪枝、MoE专用混合精度量化和激活优化。该框架既减少了模型权重大小,又降低了激活使用的内存。在128GB内存限制下,实现了据我们所知首次高效部署DeepSeek-V3等大规模模型,性能优于相同内存限制下的统一低位量化方法。

    The Mixture of Experts (MoE) architecture enables scaling Large Language Models while keeping computation costs low. However, ultra-large MoE models with hundreds of billions of parameters require massive memory and storage, making edge deployment challenging. This presentation introduces a comprehensive compression framework combining expert pruning, MoE-specific mixed-precision quantization, and activation optimization. The framework reduces both model weight size and activation memory usage, achieving the first efficient deployment of models as large as DeepSeek-V3 under 128 GB memory constraints, outperforming uniform low-bit quantization methods.

  • September 13

    14:55 - 15:20

    Hugging Face Transformer Optimum 项目

    Hugging Face transformer Optimum project

    Edge AI Workshop

    Venue 6 - B01

    Hugging Face Transformer Optimum 项目

    Hugging Face transformer Optimum project

  • September 13

    15:20 - 15:40

    茶歇

    Tea Break

    Edge AI Workshop

    West Lake State Guesthouse

    茶歇

    Tea Break

  • September 13

    15:40 - 16:05

    KTransformers: 单卡大模型的极致推理

    KTransformers: The Ultimate Inference on a Single Card

    Edge AI Workshop

    Venue 6 - B01

    KTransformers是CPU GPU异构的推理框架,能够使用一张卡进行DeepSeekR1 KimiK2等主流大模型的推理。它通过把MoE层放到CPU,MLA放到GPU实现了不同计算的分离,充分利用了不同硬件的资源。此外ktransformers还采用了最新研发的Expert Defer技术,能够充分利用CPU GPU异构架构的优势,较大提升性能。ktransformers还在不同的硬件平台上做了广泛的尝试,均取得了不错的成果。

    KTransformers is a CPU-GPU heterogeneous inference framework that can perform inference on mainstream large models such as DeepSeekR1 and KimiK2 using a single card. It achieves separation of different computations by placing MoE layers on CPU and MLA on GPU, fully utilizing resources of different hardware. Additionally, KTransformers adopts the newly developed Expert Defer technology, which can fully leverage the advantages of CPU-GPU heterogeneous architecture and significantly improve performance. KTransformers has made extensive attempts on different hardware platforms and achieved good results.

  • September 13

    16:05 - 16:30

    使用 Slang 和 Rust 实现的单一源跨平台 GPU 科学计算

    Single-source cross-platform GPU LLM inference with Slang and Rust

    Edge AI Workshop

    Venue 6 - B01

    利用Rust和Khronos新兴的Slang倡议,我们介绍了我们在跨平台GPU大语言模型推理生态系统方面的初步努力。通过单一源方法,我们旨在最大限度地减少特定后端代码并促进社区参与。

    Leveraging Rust and Khronos' emerging Slang initiative, we introduce our initial efforts toward a cross-platform GPU LLM inference ecosystem. With a single-source approach we aim to minimize backend-specific code and foster community participation.

  • September 13

    16:30 - 16:55

    端侧 AI:探索 KubeEdge 的可能性与价值

    AI for Edge: Exploring the possibilities and value with KubeEdge

    Edge AI Workshop

    Venue 6 - B01

    边缘AI通过本地数据处理实现实时、低延迟推理,在各个行业中开启变革性应用。随着云原生技术的进步,边缘AI正在演变为强大的云边协作范式,允许在边缘和云之间进行动态AI工作负载编排,以优化性能、准确性和隐私。

    Edge AI enables real-time, low-latency inference by processing data locally, unlocking transformative applications across industries. With advancements in cloud-native technologies, Edge AI is evolving into a powerful cloud-edge collaborative paradigm, allowing dynamic AI workload orchestration between edge and cloud to optimize performance, accuracy, and privacy.

  • September 13

    16:55 - 17:20

    Khronos 计算 HAL 与 图形 HAL(SpirV)对比

    Khronos Compute HAL vs Graph HAL (SpirV)

    Edge AI Workshop

    Venue 6 - B01

    Khronos 计算 HAL 与 图形 HAL(SpirV)对比

    Khronos Compute HAL vs Graph HAL (SpirV)

  • September 13

    17:20 - 17:30

    总结

    Summary

    Edge AI Workshop
  • September 13

    10:00 - 10:30

    CANN 全面开源开放策略和节奏

    CANN Comprehensive Open-Source and Openness Strategy and Roadmap

    CANN Workshop

    Venue 7 - B02

    本次演讲全面回顾昇腾芯片演进历程:从合唱团到蚁群战术,以及CANN演进历程:从投入人工到享受智能。我们探讨从能用到好用的转变:CANN特性介绍与开源开放计划,包括详细的技术路线图、社区参与计划,以及将CANN打造为开放AI计算生态系统基石的战略愿景。演讲涵盖架构创新、开发者体验改进,以及为行业合作伙伴提供的协作机会。

    This presentation provides a comprehensive overview of Ascend chip evolution: from ensemble approach to swarm tactics, and CANN evolution journey from manual investment to intelligent automation. We explore the transition from usable to user-friendly: CANN feature introduction and open-source strategy, including detailed technical roadmap, community engagement plans, and the strategic vision for making CANN a cornerstone of the open AI compute ecosystem. The talk covers architectural innovations, developer experience improvements, and collaborative opportunities for industry partners.

  • September 13

    10:30 - 11:00

    知识密度牵引下的大模型高效计算

    Efficient Computing Framework for LLMs Driven by Knowledge Density

    CANN Workshop

    Venue 7 - B02

    随着大型语言模型及其训练数据规模的不断扩大,模型性能与资源消耗之间的瓶颈日益突出。传统的模型优化方法通常专注于架构改进或硬件加速,但忽略了知识在这些大规模参数空间中是如何分布和利用的根本问题。本次演讲介绍了一种由知识密度分析驱动的新型计算框架,通过识别和优先处理大型语言模型中知识最丰富的组件,在训练和推理阶段都能更高效地利用计算资源。

    As the scale of large language models and their training data continues to expand, the bottleneck between model performance and resource consumption is becoming increasingly prominent. Traditional approaches to model optimization often focus on architectural improvements or hardware acceleration, but overlook the fundamental question of how knowledge is distributed and utilized within these massive parameter spaces. This presentation introduces a novel computing framework driven by knowledge density analysis, which enables more efficient utilization of computational resources by identifying and prioritizing the most knowledge-rich components of large language models during both training and inference phases.

  • September 13

    11:00 - 11:30

    AsNumpy:昇腾原生高效 Python 数学运算库

    AsNumpy: Ascend-Native Efficient Python Mathematical Computing Library

    CANN Workshop

    Venue 7 - B02

    当前爆发式的人工智能应用急需在兼顾性能的前提下提升开发的生产效率。本报告介绍的AsNumpy是哈工大联合华为打造的一款深度支持昇腾NPU并高度兼容Numpy接口的轻量级Python数学运算库。报告首先分析当前人工智能的计算模式,然后给出AsNumpy的设计方案和特点,最后结合实例展示了AsNumpy的易用性。

    The explosive growth of artificial intelligence applications urgently requires improving development productivity while ensuring performance. This presentation introduces AsNumpy, a lightweight Python mathematical computing library jointly developed by Harbin Institute of Technology and Huawei that deeply supports Ascend NPU and is highly compatible with the NumPy interface. The presentation first analyzes the current computing modes of artificial intelligence, then presents the design scheme and characteristics of AsNumpy, and finally demonstrates the ease of use of AsNumpy through examples.

  • September 13

    11:30 - 12:00

    昇腾深度开发创新实践

    Ascend Innovative Practices In-Depth Development

    CANN Workshop

    Venue 7 - B02

    主要介绍讯飞星火大模型使用昇腾算力实践情况。重点报告在万卡昇腾集群下,星火大规模训练集群如何进行快速系统恢复;使用Ascend C研发高效融合算子。

    This presentation mainly introduces the practical implementation of iFLYTEK's Spark large model using Ascend computing power. It focuses on reporting how Spark's large-scale training clusters achieve rapid system recovery under ten-thousand-card Ascend clusters, and the development of efficient fusion operators using Ascend C technology.

  • September 13

    10:15 - 12:00

    Nest:孵化新的 Flutter

    Nest: Hatching New Flutters

    Flutter Meetup

    Venue 9 - B05

    Flutter是当今最令人兴奋的跨平台框架之一——但任何深度使用过它的人都知道等待上游修复、处理分支和维护补丁的痛苦。在本次会议中,我们将探索Nest:一个用于扩展Flutter引擎和框架而不分裂生态系统的工具包。我们将分享Nest存在的原因、工作原理以及构建过程中面临的挑战,包括技术设计、CI/CD管道和为需要比Flutter团队更快迭代的开发者提供引擎二进制文件的实际现实。

    Flutter is one of the most exciting cross-platform frameworks today—but anyone who has worked closely with it knows the pain of waiting for upstream fixes, struggling with forks, and maintaining patches. In this session, we'll explore Nest: a toolkit for extending Flutter's engine and framework without fracturing the ecosystem. We'll share why Nest exists, how it works, and the challenges we've faced in building it, including technical design, CI/CD pipelines, and the practical realities of hosting engine binaries for developers who need faster iteration.

  • September 13

    13:30 - 13:40

    欢迎致辞

    Welcome Speech

    Chitu First Meetup
  • September 13

    13:40 - 14:10

    赤兔推理引擎的前世今生和未来

    The Past, Present, and Future of the Chitu Inference Engine

    Chitu First Meetup

    Venue 8 - B03

    赤兔推理引擎是在开源社区活跃开发中的支持多元算力的大模型推理引擎。本报告介绍赤兔推理引擎的诞生历史、技术演进与未来构想。

    Chitu inference engine is a large model inference engine that supports multi-element computing power and is actively developed in the open source community. This report introduces the birth history, technical evolution and future vision of the Chitu inference engine.

  • September 13

    14:10 - 14:40

    Chitu 与并行推理优化的技术

    Chitu and Parallel Inference Optimization Technology

    Chitu First Meetup

    Venue 8 - B03

    本次演讲介绍并行推理技术以及在LLM推理上的优化实践,重点讨论在赤兔推理系统上的优化实践。

    This talk is about parallel inference technologies and optimizations on LLM inference and optimization practices on Chitu inference system.

  • September 13

    14:40 - 15:00

    从 "能跑" 到 "好用":Chitu 工业化部署实践与效率工具链

    From "Able" to "Useful": Chitu's Industrial Deployment Practices and Turnkey Tool-chain

    Chitu First Meetup

    Venue 8 - B03

    分享 Chitu 大模型工业化部署:讲工具链提效案例,给可复用落地经验。

    Sharing Chitu large model industrial deployment practices: discussing tool-chain efficiency improvement cases and providing reusable implementation experience.

  • September 13

    15:00 - 15:20

    自主创新算力平台建设

    Building an indigenous innovation Compute Platform

    Chitu First Meetup

    Venue 8 - B03

    YiCloud 仪电智算云平台摘要:面向 AI 应用落地的训推一体智算云平台,致力于解决 AI 模型从研发到规模化部署的核心痛点,实现"开发即上线"的高效闭环。关键能力包括:1.训推一体化架构,统一平台支持训练、微调、推理全流程;2.智能资源调度,支持NVIDIA/昇腾/沐曦等异构芯片,万卡级任务秒级下发;3.弹性推理服务,高并发动态调度;4.国产化全栈适配,从芯片到模型的完整国产化支持。

    YiCloud INESA Smart Computing Platform Overview: A training-inference integrated smart computing cloud platform for AI application deployment, dedicated to solving core pain points from AI model development to large-scale deployment, achieving an efficient "development-to-online" closed loop. Features include unified training/fine-tuning/inference support, intelligent heterogeneous resource scheduling (NVIDIA/Ascend/MeTaX chips), elastic inference services, and full-stack domestic adaptation.

  • September 13

    15:20 - 15:40

    茶歇

    Tea Break

    Chitu First Meetup

    West Lake State Guesthouse

    茶歇

    Tea Break

  • September 13

    15:40 - 16:00

    基于K8s的Chitu高性能PD分离架构推理服务部署与运维实践

    Deployment and Operational Practices for Chitu's High-Performance PD Disaggregation Architecture Inference Service Based on K8S

    Chitu First Meetup

    Venue 8 - B03

    基于K8s的Chitu高性能PD分离架构推理服务部署与运维实践

    Deployment and Operational Practices for Chitu's High-Performance PD Disaggregation Architecture Inference Service Based on K8S

  • September 13

    16:00 - 16:20

    GLM - 从想象力到生产力

    GLM - From Imagination to Productivity

    Chitu First Meetup

    Venue 8 - B03

    以"让机器像人一样思考,用可信赖AI让人类更美好"为愿景,智谱致力于打造新一代认知智能大模型,专注于做大模型的中国创新。2025年1月,智谱发布全新端到端模型GLM-Realtime,支持清唱、2分钟记忆及Function Call功能。3月,智谱发布首个具备深度研究和操作能力的AI Agent,AutoGLM沉思。7月,智谱发布新一代旗舰模型GLM-4.5,首次在单个模型中实现将推理、编码和智能体能力原生融合,以满足智能体应用的复杂需求。在MMLU Pro、AIME 24、HLE等12个最具有代表性的评测基准中,GLM-4.5的综合平均分取得全球模型第三、国产模型第一,开源模型第一。

    With the vision of 'making machines think like humans and making human life better with trustworthy AI,' ZhiPuAI is committed to building a new generation of cognitive intelligence large models, focusing on Chinese innovation in large models. This talk covers GLM's evolution from imagination to productivity, including GLM-Realtime, AutoGLM, and GLM-4.5 achievements.

  • September 13

    16:20 - 16:40

    CANN开源开放分层解耦技术栈

    The CANN Open-Source Hierarchy Decoupled Technology Stack

    Chitu First Meetup

    Venue 8 - B03

    昇腾CANN开源开放策略及分层解耦技术栈分享,聚焦昇腾技术生态深化合作,致力打造三方生态昇腾竞争力。

    Ascend CANN open source strategy and hierarchical decoupled technology stack sharing, focusing on deepening cooperation in the Ascend technology ecosystem and building competitive advantages in the third-party ecosystem.

  • September 13

    16:40 - 17:00

    沐曦推理引擎的极致性能

    The Ultimate Performance of the Metax Inference System

    Chitu First Meetup

    Venue 8 - B03

    主要介绍沐曦小模型和LLM推理引擎产品,专注于在AI推理中实现极致性能。

    Introduction to MeTaX's small models and LLM inference engine products, focusing on achieving ultimate performance in AI inference.

No sessions available for category AI for Education Workshop

  • September 13

    14:00 - 17:30

    “原生应用”新境界:免去构建的开发体验

    Native Apps Without a Build Step

    RN Workshop

    Venue 9 - B05

    React Native应用比以往任何时候都更大、更复杂。在Callstack,我们构建了Rock——一个开放、模块化、自托管且可增量采用的React Native框架——帮助团队扩展、迁移和更快交付。React Native刚满10年,其采用遵循了熟悉的曲线——从早期初创公司到规模化企业,主流应用,最后是大型企业的采用。社区CLI长期以来一直是这个生态系统的支柱,但随着React Native的发展——拥抱Expo、模块化和框架驱动的开发——我们意识到今天团队的需求远远超出了CLI单独能提供的。在这次演讲中,我们将分享我们如何走到今天,为什么框架是React Native的未来,以及我们的新开源框架如何帮助团队顺利迁移、统一工具和加速交付。

    React Native apps are bigger and more complex than ever. At Callstack, we've built Rock—open, modular, self-hosted, and incrementally adoptable framework for React Native—to help teams scale, migrate, and deliver faster. React Native just turned 10, and its adoption has followed a familiar curve—from early startups to scale-ups, mainstream apps, and finally large enterprises making their move. The Community CLI has long been the backbone of this ecosystem, but as React Native evolved—embracing Expo, modularity, and framework-driven development—we realized the needs of today's teams go far beyond what the CLI alone can offer. In this talk, we'll share how we got here, why frameworks are the future of React Native, and how our new open-source framework can help teams migrate smoothly, unify tooling, and accelerate delivery.

No sessions available for category Makepad Workshop

No sessions available for category Embedded Rust x AI WorkShop

  • September 13

    18:00 - 20:00

    与 Solana 迈出 Web3 机会探索的第一步

    Take the first step with Solana to explore Web3 opportunities

    Solana for Rustaceans Workshop

    Venue 6 - B01

    了解 Rust 开发者在 Solana 有哪些机会,学习渠道,职业路径。学习互联网资本市场(链上美股,稳定币等)背后技术实现 与 Solana 技术生态。并倾听来自知名Web3开发者社区、Web3项目的Rust开源贡献者的演讲分享。

    Learn about the opportunities, learning resources, and career paths available for Rustaceans on Solana. Explore the tech behind Internet capital markets—such as on-chain stocks and stablecoins. Hear inspiring talks and insights from Rust open-source contributors across leading Web3 developer communities and projects.

No sessions available for category Open Source Globalization Workshop

Schedules are subject to change

Hangzhou

Grab your GOSIM Hangzhou ticket

Hangzhou, China

September 13-14, 2025

Secure your spot today at GOSIM Hangzhou 2025. Collaborate with innovators, engage with industry pioneers, and be part of shaping the future of open-source technology.

// temporary override